Fekete–Szegö Problem and Second Hankel Determinant for a Class of Bi-Univalent Functions Involving Euler Polynomials

نویسندگان

چکیده

Some well-known authors have extensively used orthogonal polynomials in the framework of geometric function theory. We are motivated by previous research that has been conducted and, this study, we solve Fekete–Szegö problem as well give bound estimates for coefficients and an upper estimate second Hankel determinant functions class G?(v,?) analytical bi-univalent functions, implicating Euler polynomials.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for the second Hankel determinant of certain univalent functions

*Correspondence: [email protected] 1School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Full list of author information is available at the end of the article Abstract The estimates for the second Hankel determinant a2a4 – a3 of the analytic function f (z) = z + a2z + a3z + · · · , for which either zf ′(z)/f (z) or 1 + zf ′′(z)/f ′(z) is subordinate to a certai...

متن کامل

Bounds for the second Hankel determinant of certain bi-univalent functions

Bounds for the second Hankel determinant of certain bi-univalent functions Halit ORHAN, Nanjundan MAGESH, Jagadeesan YAMINI Department of Mathematics Faculty of Science, Atatürk University 25240 Erzurum, Turkey. Post-Graduate and Research Department of Mathematics, Government Arts College for Men, Krishnagiri 635001, Tamilnadu, India. Department of Mathematics, Govt First Grade College Vijayana...

متن کامل

The Fekete-Szegö problem for a general class of bi-univalent functions satisfying subordinate conditions

In this work, we obtain the Fekete-Szegö inequalities for the class $P_{Sigma }left( lambda ,phi right) $ of bi-univalent functions. The results presented in this paper improve the recent work of Prema and Keerthi [11].

متن کامل

Horadam Polynomials Estimates for $lambda$-Pseudo-Starlike Bi-Univalent Functions

In the present investigation, we use the Horadam Polynomials to establish upper bounds for the second and third coefficients of functions belongs to a new subclass of analytic and $lambda$-pseudo-starlike bi-univalent functions defined in the open unit disk $U$. Also, we discuss Fekete-Szeg$ddot{o}$ problem for functions belongs to this subclass.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and fractional

سال: 2023

ISSN: ['2504-3110']

DOI: https://doi.org/10.3390/fractalfract7040295